A mechanism of haloalkene-induced renal carcinogenesis.

نویسندگان

  • W Dekant
  • S Vamvakas
  • M Koob
  • A Köchling
  • W Kanhai
  • D Müller
  • D Henschler
چکیده

Several halogenated alkenes are nephrotoxic; some others induce renal tubular adenocarcinomas in rodents after lifelong administration. A bioactivation mechanism accounting for the organ-selective tumor induction has been elucidated: conjugation of the parent compounds with glutathione (GSH), catalyzed by hepatic GSH S-transferases, results in the formation of haloalkyl and halovinyl glutathione S-conjugates. Formation of S-conjugates (identified by NMR and mass spectrometry) could be demonstrated with trichloroethene, tetrachloroethene, hexachlorobutadiene, perfluoropropene, trichlorotrifluoropropene, and dichloroacetylene in incubations with rat liver microsomes and in the isolated perfused rat liver. The GSH conjugates formed are eliminated from the rat liver with the bile and may be translocated to the kidney, intact or after metabolism to the corresponding cysteine S-conjugates that are metabolized in the kidney by renal tubular cysteine conjugate beta-lyase (beta-lyase) to reactive intermediates, most likely thioacylchlorides and thioketenes. Interaction of these potent electrophiles with DNA [demonstrated for intermediates formed from S-(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine] causes mutagenicity in bacteria, genotoxicity in cultured renal cells, and cytotoxicity in kidney cells. As an alternative to beta-lyase-catalyzed cleavage, the cysteine S-conjugates may be acetylated to the corresponding mercapturic acids, which have been identified in urine. The ability of the kidney to concentrate GSH and cysteine S-conjugates and the intensive metabolism of GSH S-conjugates to cysteine S-conjugates in this organ are evidently responsible for the organotropic carcinogenicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunohistochemical localization of the acylases that catalyze the deacetylation of N-acetyl-L-cysteine and haloalkene-derived mercapturates.

Acylases catalyze the hydrolysis of a range of S-substituted N-acetyl-L-cysteines. The hydrolysis of N-acetyl-L-cysteine is catalyzed by cytosolic acylase I, and activity is present in human endothelial cells and rat lung, intestinal, and liver homogenates. Many haloalkenes are metabolized to mercapturates, which also undergo acylase-catalyzed hydrolysis. The acylases that catalyze the deacetyl...

متن کامل

Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy

Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cu...

متن کامل

Porcine kidney microsomal cysteine S-conjugate N-acetyltransferase-catalyzed N-acetylation of haloalkene-derived cysteine S-conjugates.

N-Acetylation of xenobiotic-derived cysteine S-conjugates is a key step in the mercapturic acid pathway. The aim of this study was to investigate the N-acetylation of haloalkene-derived S-haloalkyl and S-haloalkenyl cysteine S-conjugates by porcine kidney cysteine S-conjugate N-acetyltransferase (NAcT). A radioactive assay for the quantification of NAcT activity was developed as a new method fo...

متن کامل

Studying humane endpoints in a rat model of mammary carcinogenesis

Objective(s): The present work intended to clearly define the most adequate humane endpoints in an experimental assay of mammary carcinogenesis in rats. Materials and Methods: Animals were observed twice a day; all parameters were registered once a week and the euthanasia endpoints were established in order to monitor the animal welfare/...

متن کامل

The Mechanism of Preventive Effect of Captopril on Renal Ischemia Reperfusion Injury is Independent of ATP Dependent Potassium Channels

Background: Renal ischemia reperfusion (IR) injury has been a major source of concern during the past decades and angiotensin converting enzyme (ACE) inhibitors have been successfully used to prevent this injury. There have been some controversial reports about the involvement of KATP channels in the mechanism of action of ACE inhibitors. In this study, we examined the effect of KATP channel bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 88  شماره 

صفحات  -

تاریخ انتشار 1990